Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex.
نویسنده
چکیده
Dual whole-cell recordings were made in layer 2/3 of the rat neocortex in synaptically connected pyramidal cells and fast-spiking non-accommodating (FSN) interneurons. In 75% of cell pairs (n = 80), the cells formed reciprocal synaptic connections. Trains of backpropagating action potentials in pyramidal cells induced Ca2+ transients in dendrites followed by inhibition of unitary IPSPs. IPSP depression was prevented by loading pyramidal cells with 5 mM BAPTA or EGTA. IPSP depression was mimicked by the metabotropic glutamate receptor (mGluR) agonist ACPD and was prevented by a mixture of the mGluR antagonists CPCCOEt and EGLU.IPSP depression was prevented by loading pyramidal cells with the antagonists of vesicular exocytosis botulinum toxin D (light chain) and GDP-beta-S. It is concluded that Ca2+-dependent release of a retrograde messenger, most probably glutamate, from pyramidal cell dendrites suppresses the inhibition of pyramidal neurons via activation of mGluRs located in FSN interneuron nerve terminals.
منابع مشابه
Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3.
Recent studies implicate dendritic endocannabinoid release from subsynaptic dendrites and subsequent inhibition of neurotransmitter release from nerve terminals as a means of retrograde signaling in multiple brain regions. Here we show that type 1 cannabinoid receptor-mediated endocannabinoid signaling is not involved in the retrograde control of synaptic efficacy at inhibitory synapses between...
متن کاملPostsynaptic calcium influx at single synaptic contacts between pyramidal neurons and bitufted interneurons in layer 2/3 of rat neocortex is enhanced by backpropagating action potentials.
Pyramidal neurons in layer 2/3 (L2/3) of the rat somatosensory cortex excite somatostatin-positive inhibitory bitufted interneurons located in the same cortical layer via glutamatergic synapses. A rise in volume-averaged dendritic [Ca2+]i evoked by backpropagating action potentials (APs) reduces glutamatergic excitation via a retrograde signal, presumably dendritic GABA. To measure the rise in ...
متن کاملSynaptically evoked dendritic action potentials in rat neocortical pyramidal neurons.
In a previous study iontophoresis of glutamate on the apical dendrite of layer 5 pyramidal neurons from rat neocortex was used to identify sites at which dendritic depolarization evoked small, prolonged Ca2+ spikes and/or low-threshold Na+ spikes recorded by an intracellular microelectrode in the soma. These spikes were identified as originating in the dendrite. Here we evoke similar dendritic ...
متن کاملSpontaneous and evoked synaptic rewiring in the neonatal neocortex.
The local microcircuitry of the neocortex is structurally a tabula rasa, with the axon of each pyramidal neuron having numerous submicrometer appositions with the dendrites of all neighboring pyramidal neurons, but is functionally highly selective, with synapses formed onto only a small proportion of these targets. This design leaves a vast potential for the microcircuit to rewire without exten...
متن کاملDendritic properties of turtle pyramidal neurons.
The six-layered mammalian neocortex evolved from the three-layered paleocortex, which is retained in present-day reptiles such as the turtle. Thus the turtle offers an opportunity to examine which cellular and circuit properties are fundamental to cortical function. We characterized the dendritic properties of pyramidal neurons in different cortical regions of mature turtles, Pseudemys scripta ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 528 Pt 3 شماره
صفحات -
تاریخ انتشار 2000